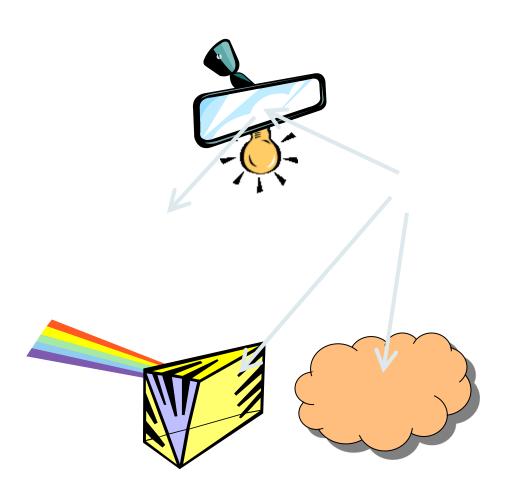
Iluminação


Márcio Bueno

{cgtarde,cgnoite}@marciobueno.com)

Fonte: Material do Prof. Claudio Esperança e do Prof. Paulo Roma Cavalcanti

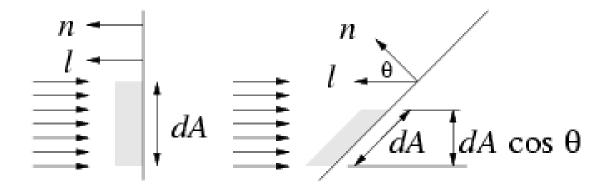
Iluminação

- Estudo de como a luz interage com objetos de uma cena
 - Emissão
 - Transmissão
 - Absorção
 - Refração
 - Reflexão

Modelo Físico

- Luz modelada como radiação eletromagnética
- Leva em conta todas as interações (todos os caminhos da luz)
- Intratável computacionalmente

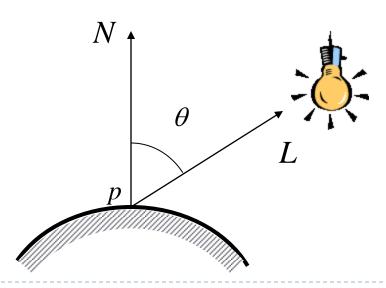
Modelos de Iluminação


- Tipicamente, a luz é amostrada em um número discreto de primárias (comprimentos de onda)
- Modelos locais (primeira ordem)
 - Apenas caminhos do tipo fonte luminosa → superficie → olho são tratados
 - Simples
 - Ex.: OpenGL
- Modelos globais
 - Muitos caminhos (ray tracing, radiosidade)
 - Complexos

Modelo de Booknight

- Considera apenas a reflexão difusa.
 - lluminação recebida em um ponto de uma superfície é refletida uniformemente em todas as direções
- Contribuição proveniente da iluminação recebida de forma indireta é modelada como uma constante.
- Baseia-se apenas na reflexão lambertiana.

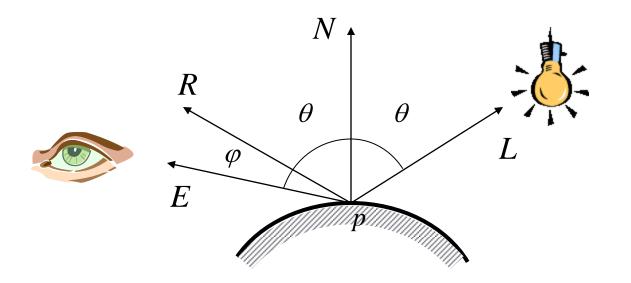
Iluminação Difusa


- Característica de materiais foscos.
- Lei de Lambert (fluxo de energia):
 - a luminosidade aparente da superfície não depende da posição do observador, mas apenas do cosseno do ângulo entre a normal e a direção da luz

Modelo Difuso

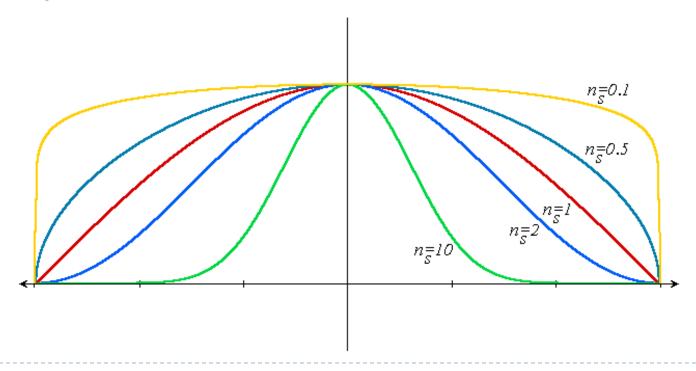
Intensidade em um ponto p é dada por:

$$I_{p} = I_{a}k_{a} + I_{d}k_{d}\cos\theta = I_{a}k_{a} + I_{d}k_{d}(\frac{L \cdot N}{|L||N|})$$


Iluminação Especular

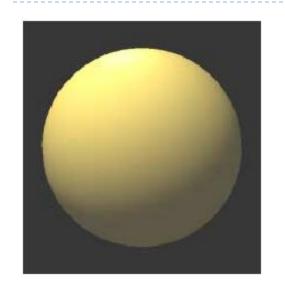
- Simula a reflexão à maneira de um espelho (objetos altamente polidos).
- Depende da disposição entre observador, objeto e fonte de luz.
- Em um espelho perfeito, a reflexão se dá em ângulos iguais
 - Dbservador só enxergaria a reflexão de uma fonte pontual se estivesse na direção certa.
- No modelo de Phong, simulam-se refletores imperfeitos assumindo que luz é refletida segundo um cone cujo eixo passa pelo observador.

Modelo de Phong

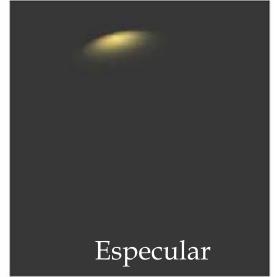

Contribuição especular é dada por

$$I_p = I_e k_e \cos^n \varphi = I_e k_e \left(\frac{R \cdot E}{|R||E|}\right)^n$$

Coeficiente de Especularidade


- Indica quão polida é a superfície
 - Espelho ideal tem especularidade infinita
 - Na prática, usam-se valores entre 5 e 100

Componentes do Modelo de Phong


- Emissão: contribuição que não depende de fontes de luz (fluorescência)
- Ambiente: contribuição que não depende da geometria
- Difusa: contribuição correspondente ao espalhamento da reflexão *lambertiana* (independe da posição do observador)
- Especular: contribuição referente ao comportamento de superfícies polidas

Componentes do Modelo de Phong

$$I_{p} = I_{a}k_{a} + I_{d}k_{d}\langle L, N \rangle + I_{e}k_{e}\langle H, N \rangle^{n}$$

Iluminação em OpenGL

- Assume fontes pontuais de luz
 - Onidirecionais
 - Spot
- Interações de luz com superfície modeladas em componentes (modelo de Phong):
 - Emissão
 - Ambiente
 - Difusa
 - Especular

Iluminação em OpenGL

- Suporte a efeitos atmosféricos como:
 - Fog
 - Atenuação
- Modelo de iluminação é computado apenas nos vértices dos polígonos.
- Suporta Gouraud shading
 - Cor dos pixels no interior dos polígonos é obtida por interpolação linear.

Fontes de Luz

- Para ligar uma fonte: glEnable (source);
 - source é uma constante cujo nome é GL_LIGHT;, começando com GL LIGHTO
 - Quantas? Pelo menos 8, mas para ter certeza:
 - > glGetIntegerv(GL_MAX_LIGHTS, &n);
- Não esquecer de ligar o cálculo de cores pelo modelo de iluminação
 - glEnable (GL_LIGHTING);

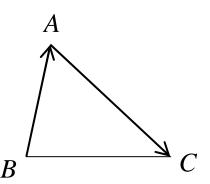
Fontes de Luz

- Para configurar as propriedades de cada fonte: glLightfv(source, property, value);
 - Property é uma constante designando:
 - Coeficientes de cor usados no modelo de iluminação:
 - □ GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR
 - Geometria da fonte
 - □ GL_POSITION, GL_SPOT_DIRECTION, GL_SPOT_CUTOFF, GL_SPOT_EXPONENT
 - Coeficientes de atenuação
 - □ GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, GL_QUADRATIC_ATTENUATION

Propriedades de Material

- Especificados por
 glMaterialfv (face, property, value)
 - Face designa quais lados da superfície se quer configurar:
 - ▶ GL_FRONT, GL_BACK, GL_FRONT_AND_BACK
 - Property designa a propriedade do modelo de iluminação:
 - FILAMBIENT, GL_DIFFUSE, GL_SPECULAR,
 GL_EMISSION, GL_SHININESS

Geometria


- Além das propriedades da luz e do material, a geometria do objeto também é importante
 - A posição dos vértices com relação ao olho e à fonte luminosa contribui no cálculo dos efeitos atmosféricos
 - A normal é fundamental
 - Não é calculada automaticamente
 - Precisa ser especificada com glNormal ()

Computando o Vetor Normal

Triângulo

Dados três vértices,

$$\vec{n} = \text{normalizar}((A - B) \times (C - A))$$

Polígono planar

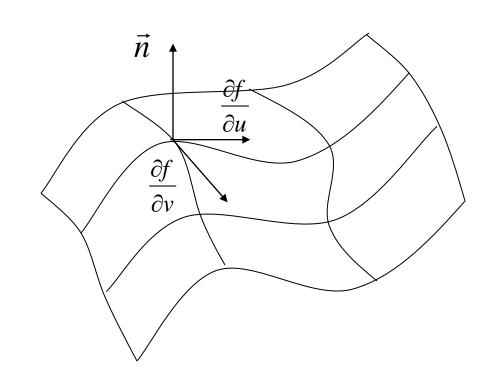
- Uma opção é usar a fórmula do triângulo para quaisquer 3 vértices
 - Sujeito a erros (vetores pequenos ou quase colineares)
- Outra opção é determinar a equação do plano
 - ax + by + cz + d = 0
 - ▶ Normal tem coordenadas (a, b, c)

Calculando o Vetor Normal de Superfícies Implícitas

 Normal é dada pelo vetor gradiente

$$f(x, y, z) = 0$$

$$\vec{n} = \begin{pmatrix} \partial f / \partial x \\ \partial f / \partial y \\ \partial f / \partial z \end{pmatrix}$$



Calculando o Vetor Normal de Superfícies Paramétricas

Normal é dada pelo produto vetorial dos gradientes em relação aos parâmetros u e v

$$P = \begin{pmatrix} f_x(u, v) \\ f_y(u, v) \\ f_z(u, v) \end{pmatrix}$$

$$\vec{n} = \frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v} = \begin{pmatrix} \frac{\partial f_x}{\partial v} & \frac{\partial u}{\partial v} \\ \frac{\partial f_y}{\partial v} & \frac{\partial u}{\partial v} \end{pmatrix} \times \begin{pmatrix} \frac{\partial f_x}{\partial v} & \frac{\partial v}{\partial v} \\ \frac{\partial f_y}{\partial v} & \frac{\partial v}{\partial v} \end{pmatrix}$$

Iluminação Ambiente

- Componente que modela como uma constante o efeito da reflexão de outros objetos do ambiente
- Depende dos coeficientes GL_AMBIENT tanto das fontes luminosas quanto dos materiais
- É ainda possível usar luminosidade ambiente não relacionada com fontes luminosas
 - params)

 params)
- Contribuição é dada por

$$A = I_a k_a$$

Atenuação

- Para fontes de luz posicionais (w = 1), é possível definir um fator de atenuação que leva em conta a distância d entre a fonte de luz e o objeto sendo iluminado
- Coeficientes são definidos pela função gllight ()
- Por default, não há atenuação $(c_0=1, c_1=c_2=0)$

$$aten = \frac{1}{c_0 + c_1 d + c_2 d^2}$$

Juntando tudo

- A atenuação só é aplicada sobre às componentes difusa e especular.
- A fórmula que calcula a cor de um vértice devida a uma fonte luminosa i é dada por:

$$C_i = A_i + aten\left(D_i + S_i\right)$$

• Portanto, no total, a cor é dada pela contribuição da iluminação ambiente (parcela não associada com fontes de luz) somada à luz emitida e às contribuições C_i

$$C = Amb + E + \sum A_i + aten (D_i + S_i)$$